講座名稱:An (F1, F4)-partition of planar graphs with girth 6
講座人:陳敏 教授
講座時間:12月9日20:00
講座地點:騰訊會議直播(ID: 667 972 959 密碼:2022)
講座人介紹:
陳敏,女,1982年6月生,浙江師范大學(xué)教授,博士生導(dǎo)師,數(shù)學(xué)與計算機(jī)科學(xué)學(xué)院副院長,省高校中青年學(xué)科帶頭人,省高校領(lǐng)軍人才培養(yǎng)計劃“高層次拔尖人才”,中國運籌學(xué)會圖論組合分會理事、副秘書長,金華市女科技工作者協(xié)會秘書長。
主要研究方向為圖的染色理論。迄今在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory、Discrete Math.、Discrete Appl. Math. 以及中國科學(xué)等國內(nèi)外學(xué)術(shù)刊物上發(fā)表60余篇SCI期刊學(xué)術(shù)論文。主持國家自然科學(xué)基金面上項目2項,主持國家自然科學(xué)基金青年基金1項,主持浙江省自然科學(xué)基金項目2項,主持留學(xué)回國人員科研啟動基金1項,現(xiàn)為JOCO期刊的編委。成果先后獲省自然科學(xué)學(xué)術(shù)獎一等獎、省科學(xué)技術(shù)獎二等獎、省首批“擔(dān)當(dāng)作為好支書”、省教育系統(tǒng)“事業(yè)家庭兼顧型”先進(jìn)個人、省“最美家庭”、校第二屆“礪行”獎教金、?!皟?yōu)秀共產(chǎn)黨員”,連續(xù)三屆獲?!拔倚哪恐械暮美蠋煛薄⒘潍@校優(yōu)秀班主任,入選校首批學(xué)術(shù)名師計劃。至今已指導(dǎo)研究生20多人,指導(dǎo)研究生發(fā)表SCI論文20多篇,5人被評為省優(yōu)秀畢業(yè)生、?!靶iL特別獎”,3人獲研究生國家獎學(xué)金。
講座內(nèi)容:
Let G = (V, E) be a graph. If the vertex set V (G) can be partitioned into two non-empty subsets V1 and V2 such that G[V1] and G[V2] are graphs with maximum degree at most d1 and d2, respectively, then we say that G has a (?d1, ?d2)-partition. A similar definition can be given for the notation (Fd1, Fd2)-partition if G[Vi ] is a forest with maximum degree at most di , where i ∈ {1, 2}. The maximum average degree of G is defined to be mad(G) = max{2|E(H)|
|V (H)| : H ? G}. In this talk, we prove that every graph G with mad(G) ≤ 165 admits an
(F1, F4)-partition. As a corollary, every planar graph with girth at least 6 admits an (F1, F4)-partition. This improves a result in [O. V. Borodin, A. V. Kostochka, Defective 2-colorings of sparse graphs, J. Combin. Theory Ser. B 104 (2014) 72–80.] saying that every graph G with mad(G) ≤ 165 admits a (?1, ?4)-partition. This is joint work with André Raspaud and Weiqiang Yu.
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院