講座名稱:Boundary-layer problem for the Keller-Segel model with physical boundary conditions
講座人:王治安 教授
講座時間:10月24日10:00-12:00
地點:騰訊會議464-235-970 會議密碼:1024
講座人介紹:
王治安, 香港理工大學(xué)應(yīng)用數(shù)學(xué)系教授,華中師大本科碩士, 加拿大艾伯塔大學(xué)應(yīng)用數(shù)學(xué)博士,美國明尼蘇達(dá)大學(xué)應(yīng)用數(shù)學(xué)所博士后。主要從事與生物數(shù)學(xué)相關(guān)的偏微分方程建模及分析研究。目前已在Proc. London Math. Soc 、 J. London Math. Soc. 、 J. Math. Biol.、JMPA、CPDE、SIAM J. Math. Anal.、SIAM J. Appl. Math. 、Indiana U. Math. J. 等雜志上發(fā)表學(xué)術(shù)論文100多篇?,F(xiàn)擔(dān)任雜志 J. Mathematical Biology, DCDS-B, MBE等雜志編委。曾獲香港數(shù)學(xué)會青年學(xué)者獎。
講座內(nèi)容:
In this talk, we shall discuss the boundary layer problem of the singular Keller-Segel model with physical boundary conditions in any dimensions. First, we obtain the existence and uniqueness of boundary-layer solution to the steady-state problem and identify the boundary-layer profile and thickness near the boundary. Then we find the asymptotic expansion of boundary-layer profile in terms of the radius for the radially symmetric domain, which can assert how the boundary curvature affects the boundary-layer thickness. Finally, we establish the nonlinear stability of the unique boundary-layer steady state solution with exponential convergence rate for the radially symmetric domain.
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院